Новости из мира высоких технологий

Искусственный интеллект стал обучаться в 10 раз быстрее и эффективнее

Подразделение компании Google, занимающееся разработками искусственного интеллекта, сообщило о создании нового метода обучения нейронных сетей, сочетающего использование передовых алгоритмов и старых видеоигр. В качестве среды обучения используются старые видеоигры Atari.

Разработчики DeepMind (напомним, что эти люди создали нейросеть AlphaGo, неоднократно победившую лучших игроков в логическую игру го) считают, что машины способны обучаться так же, как люди. С помощью тренировочной системы DMLab-30, созданной на базе шутера Quake III и аркадных игр Atari (используются 57 различных игр), инженеры разработали новый алгоритм машинного обучения IMPALA (Importance Weighted Actor-Learner Architectures). Он позволяет отдельным частям обучаться выполнению сразу нескольких задач, а потом обмениваться знаниями между собой.

Во многом новая система была основана на более ранней архитектурной системе A3C (Asynchronous Actor-Critic Agents), в которой отдельные агенты исследуют среду, затем процесс приостанавливается, и они обмениваются знаниями с центральным компонентом, «учеником». Что касается IMPALA, то у нее агентов может быть больше, а сам процесс обучения происходит несколько по-другому. В ней агенты посылают информацию сразу двум «ученикам», которые после этого еще и обмениваются данными между собой. Кроме того, если в A3C вычислением градиента функции потерь (другими словами, несоответствия предсказанных и полученных значений параметров) занимаются сами агенты, которые отправляют информацию к центральному ядру, то в системе IMPALA этой задачей занимаются «ученики».

Пример прохождения игры человеком:

Здесь показано, как с такой же задачей справляется система IMPALA:

Одной из основных проблем при разработке ИИ является время и необходимость в высокой вычислительной мощности. Даже в условиях автономности машинам нужны правила, которым они могли бы следовать в ходе собственных экспериментов и поиска путей решения задач. Так как мы не можем просто построить роботов и выпустить их на волю учиться, разработчики используют симуляции и методы глубокого обучения.

Для того чтобы современные нейронные сети могли чему-то научиться, им приходится обрабатывать огромный объем информации, в данном случае — миллиарды кадров. И чем быстрее они это делают, тем меньше времени уходит на обучение.

По словам представителей DeepMind, при наличии достаточного числа процессоров IMPALA достигает производительности в 250 000 кадров/с, или 21 миллиард кадров в день. Это абсолютный рекорд для задач такого рода, сообщает портал The Next Web. Сами же разработчики комментируют, что их система ИИ справляется с задачей лучше, чем аналогичные машины и люди.

В будущем подобные алгоритмы ИИ можно будет использовать в робототехнике. Благодаря оптимизации систем машинного обучения роботы будут быстрее адаптироваться к окружающей среде и работать эффективнее.


Источник: Искусственный интеллект стал обучаться в 10 раз быстрее и эффективнее
Автор:
Теги: технологии DeepMind искусственный интеллект нейронные сети быстрый Интеллект google web

Комментарии (0)

Сортировка: Рейтинг | Дата
Пока комментариев к статье нет, но вы можете стать первым.
Написать комментарий:
Напишите ответ :
Искусственный интеллект «оживил» героев известных картин, мультиков и президентов с денежных купюр
Искусственный интеллект «оживил» героев известных картин, мультиков и президентов с денежных купюр
2
Человек познаёт мир 02:30 16 апр 2024
Когда искусственный интеллект начнет понимать человеческие эмоции?
Когда искусственный интеллект начнет понимать человеческие эмоции?
0
Новости высоких технологий 18:00 21 янв 2017
Когда искусственный интеллект начнет понимать человеческие эмоции?
Когда искусственный интеллект начнет понимать человеческие эмоции?
0
Интересный мир 07:55 26 янв 2017
Зачем искусственный интеллект учат переписывать свой код?
Зачем искусственный интеллект учат переписывать свой код?
0
Новости высоких технологий 18:00 19 фев 2017
Как искусственный интеллект учится на наших привычках и обманах
Как искусственный интеллект учится на наших привычках и обманах
0
Новости высоких технологий 09:00 30 янв 2017
Искусственный интеллект помогает Google экономить электричество
Искусственный интеллект помогает Google экономить электричество
0
Новости высоких технологий 17:30 21 июл 2016
Кто быстрее засыпает после секса, мужчины или женщины?
Кто быстрее засыпает после секса, мужчины или женщины?
5
Женский развлекательный и поучительный сайт. 17:25 08 май 2022
Поможет ли искусственный интеллект предотвратить воспламенение батарей?
Поможет ли искусственный интеллект предотвратить воспламенение батарей?
0
Новости высоких технологий 13:30 19 дек 2016
Мы не понимаем искусственный интеллект, потому что не понимаем… интеллект
Мы не понимаем искусственный интеллект, потому что не понимаем… интеллект
0
Новости высоких технологий 09:00 21 авг 2016
Как быстрее вернуться в форму: японский секрет, проверенный столетиями
Как быстрее вернуться в форму: японский секрет, проверенный столетиями
3
Человек познаёт мир 16:30 28 июл 2023
Нейросеть превратила котиков в рыцарей, и это одно из лучшего, что до сих пор создавал Искусственный Интеллект (20 фото)
Нейросеть превратила котиков в рыцарей, и это одно из лучшего, что до сих пор создавал Искусственный Интеллект (20 фото)
5
Женский развлекательный и поучительный сайт. 18:57 27 ноя 2022
Искусственный интеллект DeepMind больше не нуждается в людях
Искусственный интеллект DeepMind больше не нуждается в людях
0
Новости высоких технологий 12:30 18 окт 2016

Выберете причину обращения:

Выберите действие

Укажите ваш емейл:

Укажите емейл

Такого емейла у нас нет.

Проверьте ваш емейл:

Укажите емейл

Почему-то мы не можем найти ваши данные. Напишите, пожалуйста, в специальный раздел обратной связи: Не смогли найти емейл. Наш менеджер разберется в сложившейся ситуации.

Ваши данные удалены

Просим прощения за доставленные неудобства